Experience-Driven Procedural Content Generation

Georgios N. Yannakakis, Julian Togelius

Paolo Burelli

Center for Computer Games Research (CCGR)

IT University of Copenhagen (ITU)

Denmark

Center for Computer Games Research @ ITU

- http://game.itu.dk
- Established in 2003
- 7 Faculty, 6 PhD students
- Research Areas:
 - Humanities/Arts/Social Sciences:
 Game Theory, Game Design and Analysis
 - Technology/Computing:
 AI, Usability, Player Experience,
 Cognitive/Affective Modeling

Game AI/Technology SIG

Specialization in Artificial Intelligence and Game technology

- Games and Entertainment
 - Personalization
 - Adaptation
 - Procedural Content Generation
- Games and HealthCare
 - Exertainment, Wiihabilitation
- Games and Education
 - Serious games for conflict resolution

Technology

User/Player Modeling, Real-Time Adaptation, Multimodal Interaction

Today's Presentation

- Introduction to
 - Player Experience Modeling
 - Procedural Content Creation/Generation
 - Their relation: EDPCG
- Showcased via dissimilar case-studies
 - Entertainment, Heath Care, Education

Core Idea of EDPCG

Research questions of EDPCG

- How to capture Player Experience?
- How to represent content?
- How to evaluate the quality of content?
- How to optimize game content for Player Experience?

How to Capture Player Experience

Subjectively

- Asking players: self-report questionnaires (ranking, preferences)
- Pros: subjective self-reported notions of emotional states
- Cons: memory dependent, noisy, post-experience, intrusive

Objectively

- Physiology (GCR, EEG, EMG, BVP,...); eye-tracking; facial expression; speech
- Pros: reliable measures of user experience
- Cons: noisy; technically non plausible; games have a particular impact on physiology and facial expression; verbal cues are rare; based on annotation of other players

GamePlay-Based

- Player game preferences (what players do relates to their experience)
- Pros: real-time efficiency, not intrusive
- Cons: strong assumption about similarity of people, limitations in available information

Player Experience Modeling (PEM)

Game Content

Building blocks of a Game (and Player Experience)

- NPC behavior
- Quest/story
- Camera parameters/settings
- Audio settings
- Levels, maps, tracks
- Game mechanics, game design
- Graphics/textures

We need (ED)PCG to...

- Automate game design and testing processes
- Design new games
- Tailor player experience

Representing Content (e.g. Dungeon Map)

- Directly: grid
- More indirectly: position and orientation of walls
- Even more indirectly: patterns of walls and floor
- Very Indirectly: number of rooms and doors
- Indirectly: random seed

How to Evaluate Content Quality

Direct utility/fitness

- A direct mapping between content and quality; e.g. number of jumps in a platform game
- Theory-driven vs. data-driven

Simulation-based

- An Al agent (human-like?) plays the game for a while and content is evaluated through playing style
- Static (no learnability) vs. dynamic (content quality fluctuates)

Interactive fitness

- Real-time evaluation via a player or players
- Implicit (self-reports, verbal cues) vs. explicit (e.g. picking up weapons)

How to optimize Content for Player Experience

- Search for good content in the solution space
 - Exhaustive search, gradient search, stochastic (genetic) search, Monte Carlo,...
 - Representation and search space size dependent

G. N. Yannakakis, J. Hallam, Real-Time Game Adaptation for Optimizing Player Satisfaction, in *IEEE TCIAIG 2009*.

Ongoing Projects – Games & Entertainment

Player Modeling – Tomb Raider Underworld

- Over 1 million player data
 - EIDOS servers
- Player Modeling via selforganization
- Game design
 - -Testing and postmortem
 - -Is game played as intended
- Tailor player experience

Procedural Map Generation: Multi-Objective Evolution

Pilot RTS Maps

StarCraft Maps

Emotionally Adaptive Camera

- 36 subjects
- Player Experience model accuracy:
 - 76-88% (3-fold CV)

M. Schwartz, H. P. Martinez, G. N. Yannakakis, and A. Jhala, **Investigating the Interplay between Camera Viewpoints, Game Information, and Challenge** in Proc. of AIIDE, 2009

Mario Bros – Adaptive Content Creation

- 240 subjects (960 games)
- Player Experience model accuracy:
 - 73-92% (3-fold CV)

C. Pedersen, J. Togelius, G. N. Yannakakis., **Modeling Player Experience for Content Creation** *IEEE TCIAG*, 2010

Games and HealthCare

Wiihabilitation

- Difficulty adjustment
- Content = gates
- Content evaluation player performance

Physical Interactive Games

Game Adaptation for maximizing fun

G. N. Yannakakis, J. Hallam, Real-Time Game Adaptation for Optimizing Player Satisfaction, *IEEE TCIAIG*, 2009.

Games and Education

Serious/Pervasive Games for Conflict Resolution

- Design games for teaching social skills in schools
- User (cognitive, affective) modeling
 - User preferences
 - Natural interaction (face, speech)
- Adaptive quest generation of co-op puzzle games
- EU funded project: "SIREN"

2010 IEEE CIG – ITU, August, 2010

First ever PCG competition: Level generation in Mario Bros

Further Information

game.itu.dk

gameAl.itu.dk

